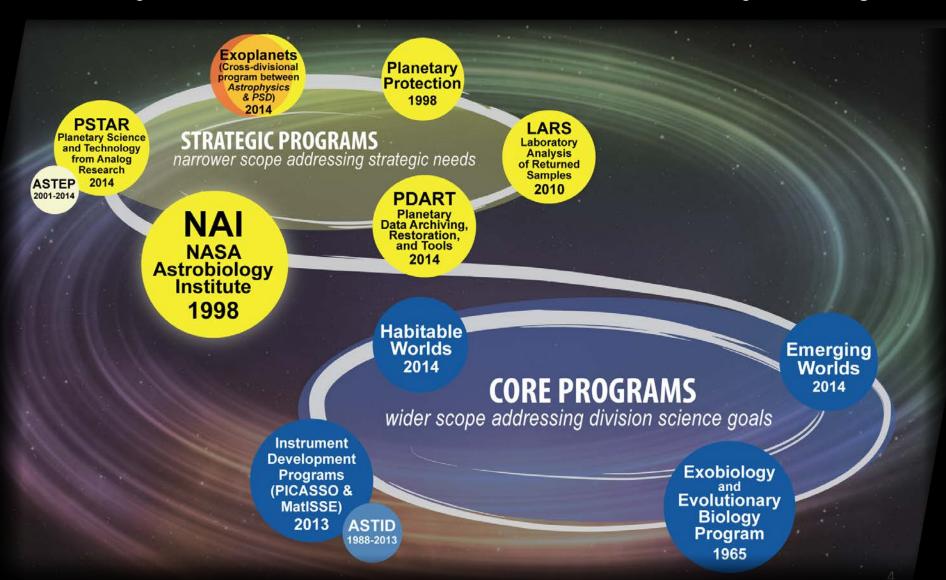
NASA Astrobiology Institute

Penelope J. Boston

NASA Astrobiology Institute
NASA Ames Research Center, Moffett Field, CA 94035

2018

Astrobiology


3 fundamental questions

Astrobiology

Planetary Science Division (PSD), Research & Analysis Program

Microbial Ecology Physical Science Molecular Biophysics Infrared Astronomy **Marine Chemistry Materials Science Earth Science** Geomicrobiology Geophysical Sciences Computational Science & Engineering **Environmental Fluid Mechanics** Planetary Dynamics Soil Science **Molecular Biophysics Solid State Physics** Evolution Geography Earth Science Genetics Soil Chemistry Geology Meteorology Physics Remote Sensing Isotope Geochemistry Oceanography
Sophy Ophysics Paleontology

Bioinformatics Inorganic Chemistry Cellular Biology

Anthropology

Anthropology

Bioinformatics **Applied Mathematics** Philosophy **Astrophysics** Biotechnology Geochemistry Marine Biogeochemistry Volcanology COLLABORATION Zoology **Ecology Astrochemistry** Planetary Sciences Mineralogy Astrobiology Chemistry Life Sciences Biology Marine Biology Genetics Theoretical Physics Microbiology Paleobiology

Molecular Biology

Biometeorology Planetary Science

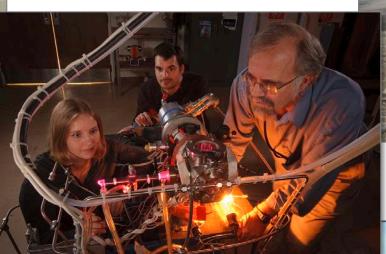
Virology

Astrogeophysics

Organic Chemistry

Artificial Intelligence

Experimental petrology


NAI Mission Statement 5 Elements

Train the Next Generation of Astrobiologists

Education and Outreach In Transition...

Collaborative, Interdisciplinary Research

Provide Leadership for NASA Space Missions

Information Technology for Research

NAI: A Virtual Institute Without Walls

- Competitively-selected science teams, each a consortium (currently 12 teams)
- ~600 members at ~100 participating institutions
 - ~320 "senior" scientists
 - ~280 postdocs and students
 - ~20 members of the US National Academy of Sciences
- Managed/integrated by a central office at NASA Ames Research Center

CAN 6 TEAMS

- Massachusetts Institute of Technology
- University of Illinois at Urbana-Champaign
- University of Southern California
- University of Wisconsin
- VPL at University of Washington

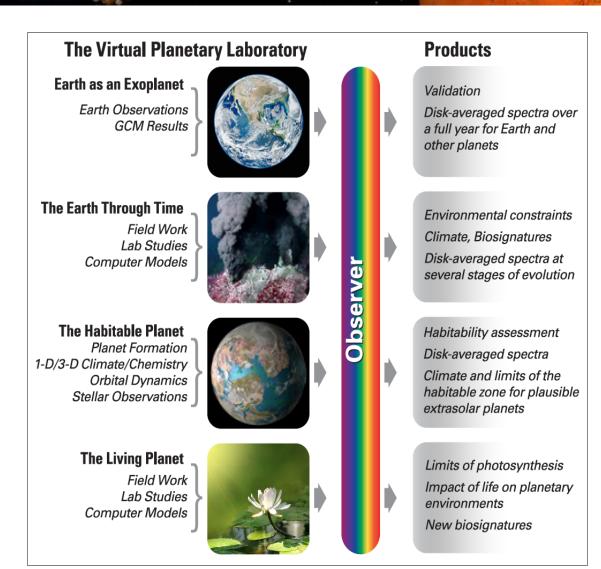
CAN 7 TEAMS

- NASA Goddard Space Flight Center
- NASA Ames Research Center
- NASA Jet Propulsion Laboratory
- SETI Institute
- University of Colorado in Boulder
- University of California, Riverside
- University of Montana in Missoula

CAN 8 TEAMS

- Pennsylvania State University
- NASA Jet Propulsion Laboratory
- Rutgers University

NAI CAN 6, 7, & 8 Teams

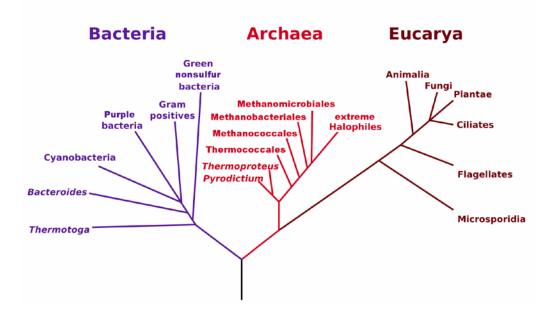


CAN 6: University of Washington

The Virtual Planetary Laboratory

PI is Victoria Meadows

- .. to develop, refine and combine 1-D and 3-D climate, photochemical, radiative transfer, atmospheric escape, planetary interior, biogeochemical, biological productivity, vegetation, orbital evolution and planet formation models and.
- . . as input to these models, to obtain laboratory, field and observational data from the stellar, planetary and biological sciences, and
- ... use these results to recognize habitable worlds and to discriminate between the spectra of planets with and without life, by understanding the signatures of life in the context of their planetary environment

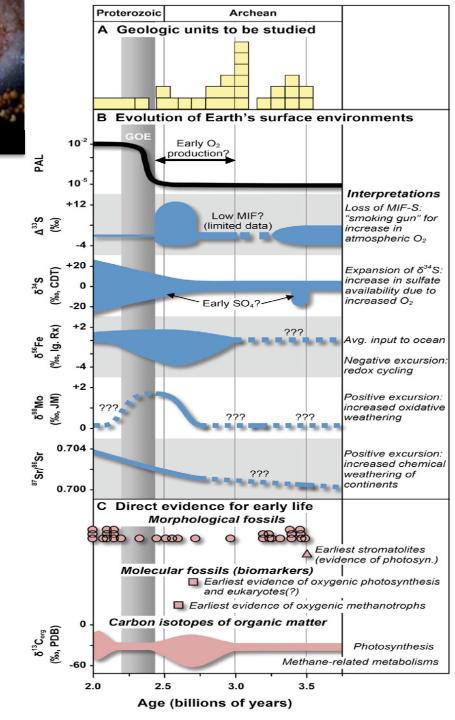

CAN 6: University of Illinois

Towards Universal Biology: Constraints from Early and Continuing Evolutionary Dynamics of Life on Earth
Pl is Nigel Goldenfield

- Study the general physical principles underlying the emergence of life – a mathematical basis for the emergence of evolvable dynamical processes
- Investigate Life before the Last Universal Common Ancestor (LUCA)

 the "progenote", a hypothetical communal state of gene sharing that preceded cellular life, using detailed and sophisticated analyses of core translational machinery
- Examine how environmental conditions affect the speed with which evolutionary adaptation takes place, i.e., how the ability to evolve itself evolves

Phylogenetic Tree of Life


 Understand the emergence of cellular machinery following the progenote state – focusing on mining Archaeal genomes, searching for the ancestors at the root of the Eukarya-Archaeal branching and determining how genomes became more stable over evolutionary time

CAN 6: University of Wisconsin

Habitability, Life Detection, and the Signatures of Life on the Terrestrial Planets

PI is Clark Johnson

- . . to develop, using Mars analog environments, new approaches for the detection of biomolecules, and increase our knowledge of biomolecule-rock substrate interactions
- ... to develop a mechanistic understanding of the proxies that have been used to interpret ancient rocks and ancient microbial ecology – and to develop new proxies focusing on three mineral groups: clays, Fe-Si oxides, and carbonates
- .. to use the ancient rock record on Earth, largely using isotopic tracers, to understand the co-evolution of the environment and a diverse range of microbial metabolisms providing an essential interpretive context for studies of ancient rocks on Mars

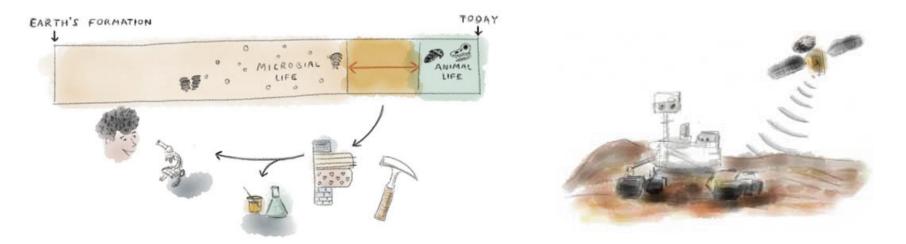
CAN 6: University of Southern California

Life Underground

PI is Jan Amend

- What spectral/optical signals indicate the presence of biomass?
- What kind of metabolic activities can be detected/measured in situ?
- What is the limit of resolution of biomass detection in deep subsurface samples?
- Can one distinguish living from dead biomass in situ?

In situ Life Detection and Characterization

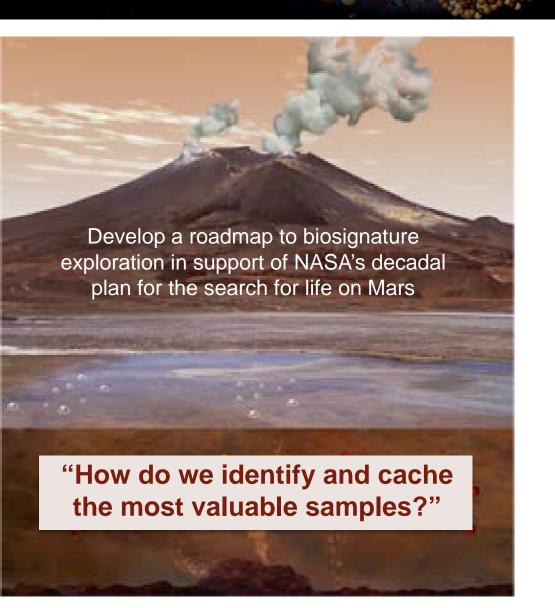

Access to the Subsurface

Guided Cultivation of 'Intra-Terrestrials' Energy Flow and Metabolic Modeling

CAN 6: Massachusetts Institute of Technology

Foundations of Complex Life: Evolution, Preservation and Detection on Earth and Beyond

PI is Roger Summons


Questions to be addressed include:

- What is the relationship between genomic and morphological complexity?
- What caused large Neoproterozoic (1000-542 million years ago) perturbations of the carbon cycle, and how do they relate to the emergence of biological complexity?
- What principles and mechanisms determine the preservation of organic matter and fossils, through time and in relation to ocean-atmosphere chemistry?
- What taphonomic insights drawn from these studies apply elsewhere, particularly Gale Crater on Mars?

CAN 7: The SETI Institute

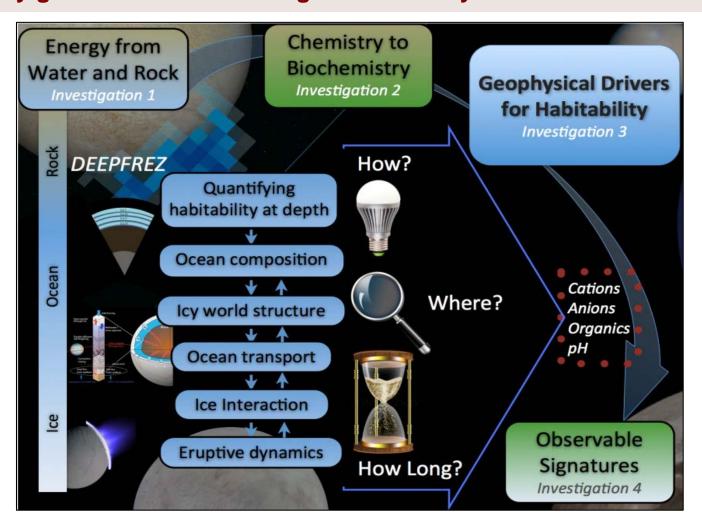
Changing Planetary Environments & the Fingerprints of Life

PI is Nathalie Cabrol

The Signatures of Habitability: Mars Ancient Mineral Record and Terrestrial Aerial Imagery

Taphonomic Windows & Biosignature Preservation:Earth Analogs

Environmental Control on the Survival & Preservation Potential of Organic Molecules


Adaptive Detection of
Biosignatures: Applying Data
Fusion, Novelty Detection, and
Autonomous Detection of
Biogenicity

CAN 7: Jet Propulsion Laboratory

Icy Worlds: Astrobiology at the Rock-Water Interface and Beyond

PI is Isik Kanik

How can geochemical disequilibria drive the emergence of metabolism and ultimately generate observable signatures on icy worlds?

CAN 7: NASA Goddard Space Flight Center

Origin and Evolution of Organics and Water in Planetary Systems

PI is Mike Mumma

Did delivery of exogenous organics and water enable the emergence and evolution of life? Why is Earth wet and alive?

- What material was delivered?
- How was prebiotic matter synthesized and processed?
- What dynamical mechanisms delivered these primitive bodies?
- Can we find evidence for habitability elsewhere in the present day Solar System?
- Develop instrument protocols for future in situ investigations.

The Messengers

Disks

Comets

Extraterrestrial Material

Modern Worlds

Evolved Bodies

Exoplanets

B. Searching the **Skies**

ALMA

Interstellar

Medium

Α.

NASA InfraRed Telescope Facility

Cosmic Ice Facility

The Team's Laboratory Facilities

Cosmic Dust Facility

Organic Sample Analysis

Molecular Distribution

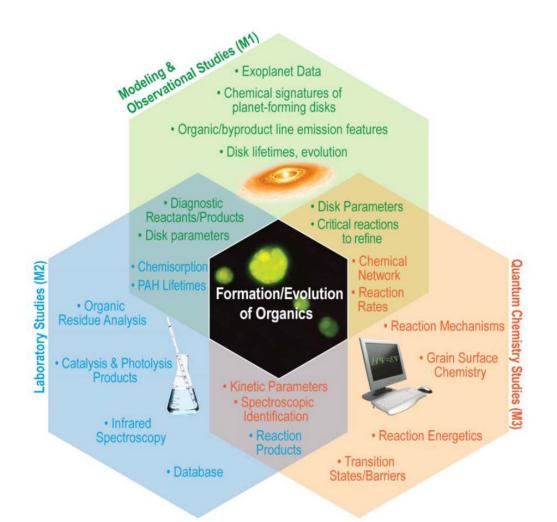
Keck Observatory

James Webb Space Telescope

Terahertz Spectroscopy

Advanced Models. Chemical & Spectral

Ultra High-Res Mass Spectrometry

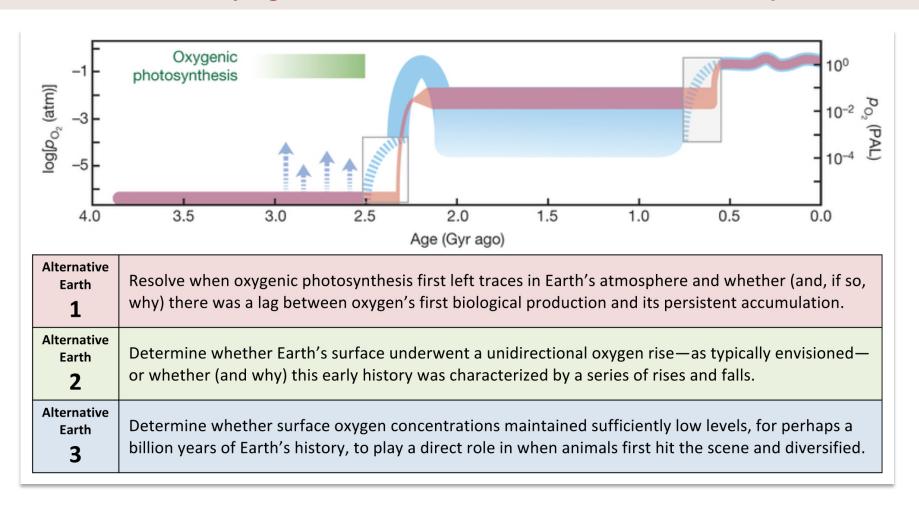

Laser Mass Spectrometry

CAN 7: NASA Ames Research Center

The Evolution of Prebiotic Chemical Complexity and the Organic Inventory of Protoplanetary

Disks and Primordial Planets

Pl is Scott Sandford

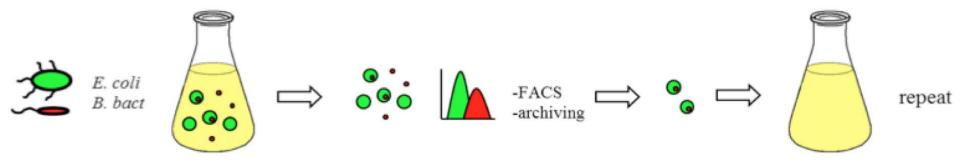


. . . to understand the chemical processes at every stage in the evolution of organic chemical complexity, from quiescent regions of dense molecular clouds, through all stages of cloud collapse, protostellar disk, and planet formation, and ultimately to the materials that rain down on planets - and to understand how these depend on environmental parameters like the ambient radiation field and the abundance of H2O.

CAN 7: University of California, Riverside Alternative Earths: Explaining Persistent Inhabitation on a Dynamic Early Earth

PI is Timothy Lyons

How has Earth remained persistently inhabited through most of its dynamic history, and how do those varying states of inhabitation manifest in the atmosphere?



CAN 7: University of Montana (Georgia Tech)

RELIVING THE PAST: Experimental Evolution of Major Transitions in the History of Life

PI is Frank Rosenzweig

What forces bring about major transitions in the evolution of biocomplexity?

Organized around five questions related to major transitions in the history of Life:

How do enzymes and metabolic networks evolve?

How did the eukaryotic cell come to be?

How do symbioses arise?

How does multicellularity evolve? and

How do pleiotropy, epistasis and mutation rate constrain the evolution of novel traits?

A unifying theme underlying these questions is: how do cooperative vs. competitive interactions play out in driving major transitions that occur when independently replicating entities combine into a larger, more complex whole?

CAN 7: University of Colorado

Rock-Powered Life: Revealing Mechanisms of Energy Flow from the Lithosphere to the Biosphere
Pl is Alexis Templeton

How do the mechanisms of low temperature water/rock reactions control the distribution, activity, and biochemistry of life in rock-hosted systems?

Photo credit: Hannah Miller

- Defining the pathways that control how energy is released from ultramafic rocks as they react with low-temperature fluids,
- Identifying and interpreting the process rates and ecology in systems undergoing water/rock reactions,
- Quantifying the geochemical and mineralogical progression of water/rock reactions in the presence and absence of biology,
- Characterizing microbial communities within rock-hosted ecosystems and evaluating their metabolic activities,
- Developing and testing predictive models of biological habitability during water/rock interaction.

Integrating Research Themes of the NAI

Serpentinizing Systems

(Univ. of Colorado, USC, SETI Inst., JPL, U.C.-Riverside, Univ. of Montana, Univ. of Wisconsin, Univ. of Illinois)

Habitable Planetary States, the Evolution of Microbial Life, and their Astronomical Biosignatures

(U.C.-Riverside, Univ. of Montana, Univ. of Washington, Univ. of Wisconsin, MIT, SETI Inst., JPL, Univ. of Colorado, USC)

Planetary Inventory of Organics and Water, and the Origin of Life (GSFC, U.C.-Riverside, MIT, Univ. of Illinois, NASA Ames)

Environmental Change and Biosignatures

(SETI Inst., Univ. of Wisconsin, Univ. of Colorado, USC, U.C.-Riverside, MIT, others)

GeoBioCell Applications

(Univ. of Illinois, Univ. of Montana, USC, Univ. of Wisconsin, JPL, Univ. of Colorado, U.C.-Riverside, GSFC)

Evolution of Complex Life

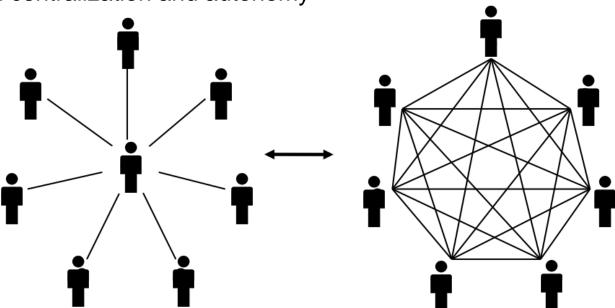
(Univ. of Montana, MIT, SETI Inst., U.C.-Riverside, USC, Univ. of Colorado)

International Partners

ASSOCIATE PARTNERS:

- Centro de Astrobiología (CAB)
- Australian Centre for Astrobiology (ACA)

AFFILIATE PARTNERS:


- Astrobiology Society of Britain (ASB)
- Canadian Astrobiology Network (CAN)
- European Exo/Astrobiology Network Association (EANA)
- Helmholtz Alliance: Planetary Evolution and Life

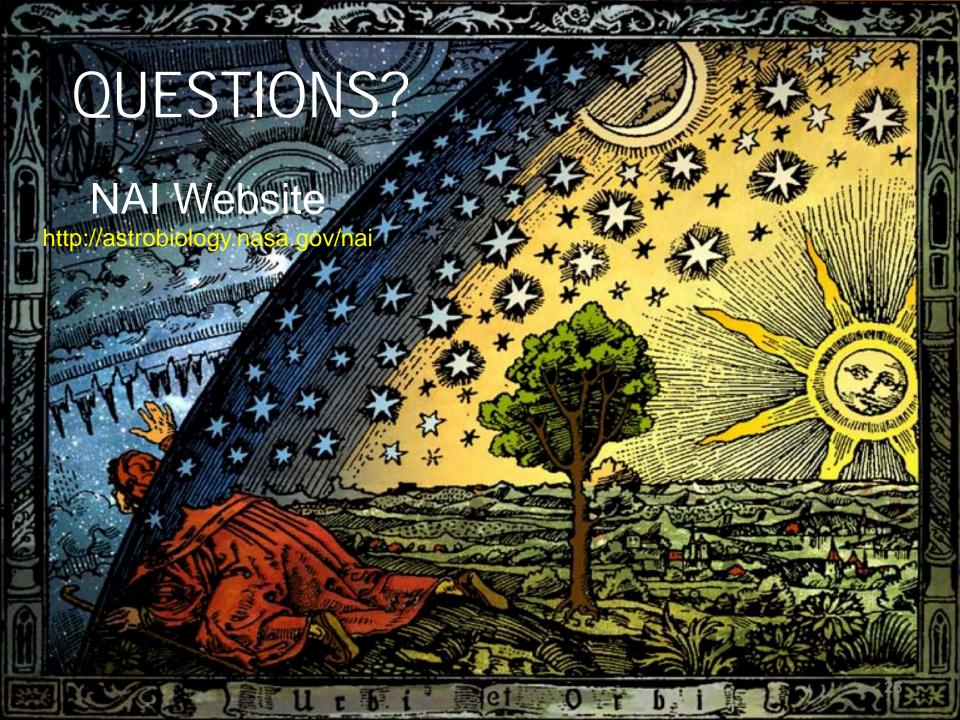
- Instituto de Astrobiología Colombia (IAC)
- Nordic Network of Astrobiology
- Russian Astrobiology Center (RAC)
- Société Française d'Exobiologie (SFE)
- Sociedad Mexicana de Astrobiologia (SOMA)
- UK Centre for Astrobiology (UKCA)
- USP Research Unit in Astrobiology

Collaborative Technologies for Astrobiology: Information Technology Working Group (ITWG)

- Composed of IT enthusiasts from each team
- Meets virtually once a month
- Share lessons learned and knowledge
- Test hardware, software and integration
- POCs for virtual events
- Provides local training, support, expertise and feedback within the system
- Build organizational structures within NAI to promote an optimal interaction between centralization and autonomy

Other NAI Efforts

- Minority Institution Research Support Program (for faculty)
- Postdoctoral Fellowship Program (for postdoctoral scholars)
- The Lewis and Clark Fund for Exploration and Field Research in Astrobiology (for graduate students & postdocs)
- Early Career Collaboration Award (for graduate students & postdocs)
- Meeting and Workshop Support, Workshops Without Walls
- Education and Public Outreach in Transition.....


NASA/Library of Congress Blumberg Astrobiology Chair

Lucianne Walkowicz

Oct. 2017 – Sept. 2018

An astronomer based at the Adler Planetarium, Walkowicz intends to work on a project entitled "Fear of a Green Planet: Inclusive Systems of Thought for Human Exploration of Mars." Her project will create an inclusive framework for human exploration of Mars—a vision that encompasses both cutting-edge research on Mars as a place of essential astrobiological significance and weaves in lessons from the diverse histories of exploration on Earth. In addition to studying stellar magnetic activity and the effect on planetary suitability for extraterrestrial life at Adler Planetarium, Walkowicz is a TED senior fellow and artist.

